Materi Matematika SMA : 2. Fungsi Kuadrat
2. FUNGSI KUADRAT
A. Persamaan Kuadrat
3) Akar–akar persamaan kuadrat dapat dicari dengan memfaktorkan ataupun dengan rumus:
4) Pengaruh determinan terhadap sifat akar:
a) Bila D > 0, maka persamaan kuadrat memiliki 2 akar real yang berbeda
b) Bila D = 0, maka persamaan kuadrat memiliki 2 akar real yang kembar dan rasional
c) Bila D < 0, maka akar persamaan kuadrat imajiner (tidak memiliki akar–akar)
5) Jumlah, selisih dan hasil kali akar–akar persaman kuadrat
Adapun langkah penyelesaian Pertidaksamaan kuadrat adalah sebagai berikut:
1. Ubah bentuk pertidaksamaan ke dalam bentuk baku (jika bentuknya belum baku)
2. Cari nilai pembentuk nolnya yaitu x1 dan x2 (cari nilai akar–akar persamaan kuadratnya)
3. Simpulkan daerah himpunan penyelesaiannya:
2. FUNGSI KUADRAT
A. Persamaan Kuadrat
3) Akar–akar persamaan kuadrat dapat dicari dengan memfaktorkan ataupun dengan rumus:
4) Pengaruh determinan terhadap sifat akar:
a) Bila D > 0, maka persamaan kuadrat memiliki 2 akar real yang berbeda
b) Bila D = 0, maka persamaan kuadrat memiliki 2 akar real yang kembar dan rasional
c) Bila D < 0, maka akar persamaan kuadrat imajiner (tidak memiliki akar–akar)
5) Jumlah, selisih dan hasil kali akar–akar persaman kuadrat
B. Pertidaksamaan Kuadrat
Bentuk BAKU pertidaksamaan kuadrat adalahAdapun langkah penyelesaian Pertidaksamaan kuadrat adalah sebagai berikut:
1. Ubah bentuk pertidaksamaan ke dalam bentuk baku (jika bentuknya belum baku)
2. Cari nilai pembentuk nolnya yaitu x1 dan x2 (cari nilai akar–akar persamaan kuadratnya)
3. Simpulkan daerah himpunan penyelesaiannya:
C. Menyusun Persamaan Kuadrat Baru
D. Menenetukan persamaan grafik fungsi kuadrat
E. Kedudukan Garis Terhadap Kurva Parabola
EmoticonEmoticon